6569 measured reflections

 $R_{\rm int} = 0.041$

2385 independent reflections 2096 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(benzene-1,3-dicarboxylato- $\kappa^2 O, O'$)zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$

Xiu-Mei Li,^a Yan-Hui Dong,^b* Qing-Wei Wang^c and Bo Liu^c

^aDepartment of Chemistry, Tonghua Teachers' College, Tonghua 134002, People's Republic of China, ^bDepartment of Pharmacy and Food Science, Tonghua Teachers' College, Tonghua 134002, People's Republic of China, and CDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China Correspondence e-mail: lixm20032006@163.com

Received 6 May 2007; accepted 3 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.091; data-to-parameter ratio = 14.2.

In the title compound, $[Zn(C_8H_5O_4)_2(C_{10}H_8N_2)]_n$, the Zn^{II} atom lies on a twofold rotation axis, and is coordinated by two N atoms of two 4,4'-bipyridine ligands and two carboxylate groups, each in a chelating mode, from two isophthalate ligands. The 4,4'-bipyridine ligand, located on an inversion center, bridges the Zn^{II} atoms, forming a one-dimensional zigzag chain structure. O-H···O hydrogen bonds and π - π stacking interactions [with a shortest atom-to-atom distance of 3.41 (1) Å] are observed between the chains.

Related literature

For general background, see: Eddaoudi et al. (2001). For related structures, see: Chen & Liu (2002); Groeneman et al. (1999); Li et al. (2006).

Experimental

Crystal data

$[Zn(C_8H_5O_4)_2(C_{10}H_8N_2)]$	V = 2411.4 (6) Å ³
$M_r = 551.79$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 20.940 (3) Å	$\mu = 1.07 \text{ mm}^{-1}$
b = 9.6078 (12) Å	T = 292 (2) K
c = 14.7942 (19) Å	$0.12 \times 0.09 \times 0.05 \text{ mm}$
$\beta = 125.884 (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-	
detector diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.890, T_{\max} = 0.951$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	168 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2385 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1—O1 Zn1—N1	1.9689 (15) 2.0669 (16)	Zn1-O2	2.5953 (15)
$D1^{i}$ – $Zn1$ – $O1$	139.21 (9)	$O1^i$ -Zn1-O2	97.19 (5)
D1 – $Zn1$ – $N1$	107.76 (6)	N1-Zn1-O2	86.01 (6)
$D1-Zn1-N1^{i}$	98.86 (6)	$N1^{i}$ -Zn1-O2	153.80 (6)
$N1-Zn1-N1^{i}$	97.64 (9)	O2 ⁱ -Zn1-O2	102.11 (6)

Symmetry code: (i) -x + 1, $y, -z + \frac{3}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
O4−H4···O2 ⁱⁱ	0.82	1.97	2.771 (3)	165	
Symmetry code: (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.					

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We thank Mr Heng-Qing Jia of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2062).

References

- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
- Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.

Groeneman, R. H., MacGillivray, L. R. & Atwood, J. L. (1999). *Inorg. Chem.* 38, 208–209.

- Li, X. M., Cui, Y. C., Wang, Q. W., Li, C. B., Wang, R. Z. & Gao, G. G. (2006). Chin. J. Struct. Chem. 4, 481–484.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1839-m1840 [doi:10.1107/S1600536807027067]

catena-Poly[[bis(benzene-1,3-dicarboxylato- $\kappa^2 O, O'$)zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

X.-M. Li, Y.-H. Dong, Q.-W. Wang and B. Liu

Comment

Metal-organic complexes with a variety of supramolecular architectures have attracted increasing interest because of their novel topologies and potential applications as functional materials (Eddaoudi *et al.*, 2001). Recently, a successful strategy for preparing these materials has been the assembly reaction between transition metal ions and two types of ligands, one acts as a terminal ligand and the other acts as a bridging ligand. In this respect, diverse dicarboxylates with various oriented carboxyl groups have been utilized to build coordination polymers. These ligands are able to bridge metal centers in different modes and also produce either linear or zigzag polymeric chains (Chen & Liu, 2002; Groeneman *et al.*, 1999; Li *et al.*, 2006). In this work, we use isophthalic acid as a terminal ligand and 4,4'-bipyridine (bpy) as a bridging ligand, generating a new compound, (I), under hydrothermal condition.

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), the Zn^{II} atom lying on a twofold rotation axis is six-coordinated by two N atoms from two bpy ligands, and two carboxylate groups, each in a chelating mode, from two isophthalate ligands (Fig. 1). The bpy ligand located on an inversion center bridges the Zn^{II} atoms, forming a one-dimensional zigzag chain structure. It is noteworthy that there exist π - π interactions, with the shortest atom-to-atom distance of 3.41 (1) Å, and O—H…O hydrogen bonds (Table 2, Fig. 2) between the isophthalate ligands in the neighboring chains, which lead to a three-dimensional supramolecular network.

Experimental

Compound (I) was prepared from a mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (0.119 g, 0.4 mmol), isophthalic acid (0.134 g, 0.8 mmol), bpy (0.070 g, 0.4 mmol) and H_2O (18 ml) in a 30 ml Teflon-lined autoclave under autogenous pressure at 423 K for 7 d. After cooling to room temperature, colorless crystals suitable for X-ray structure analysis were obtained. Analysis, calculated for $C_{26}H_{18}N_2O_8Zn$: C 64.7, H 2.7, N 5.8%; found: C 64.5, H 2.6, N 5.7%.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H= 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and with O—H = 0.82Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The asymmetric unit of (I), together with symmetry-related atoms to complete the Zn coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, y, 3/2 - z, (ii) 1/2 - x, -1/2 - y, 1 - z.]

Fig. 2. View of the chain structure in (I).

catena-Poly[[bis(benzene-1,3-dicarboxylato- $\kappa^2 O, O'$)zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

Crystal data

 $[Zn(C_8H_5O_4)_2(C_{10}H_8N_2)]$ $M_r = 551.79$ Monoclinic, C2/c Hall symbol: -C 2yc a = 20.940 (3) Å b = 9.6078 (12) Å c = 14.7942 (19) Å $\beta = 125.884$ (2)° V = 2411.4 (6) Å³ Z = 4 $F_{000} = 1128$ $D_x = 1.520 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2132 reflections $\theta = 2.4-26.1^{\circ}$ $\mu = 1.07 \text{ mm}^{-1}$ T = 292 (2) K Block, colorless $0.12 \times 0.09 \times 0.05 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2385 independent reflections
Radiation source: fine-focus sealed tube	2096 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 292(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 24$
$T_{\min} = 0.890, T_{\max} = 0.951$	$k = -11 \rightarrow 11$
6569 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0583P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2385 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
168 parameters	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom gita logation: structure inverient direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.5000	0.12559 (3)	0.7500	0.03382 (14)
C2	0.32554 (15)	-0.1920 (3)	0.64815 (19)	0.0543 (6)
H2A	0.3122	-0.2483	0.6859	0.065*
O2	0.39232 (9)	0.29538 (15)	0.71869 (12)	0.0433 (4)
01	0.49428 (9)	0.19702 (15)	0.86982 (13)	0.0461 (4)
C5	0.36932 (14)	-0.0250 (2)	0.54810 (19)	0.0533 (6)
H5A	0.3839	0.0327	0.5125	0.064*
O4	0.25572 (10)	0.67575 (18)	0.91871 (14)	0.0606 (5)
H4	0.2165	0.7250	0.8809	0.091*
O3	0.22568 (15)	0.6223 (2)	0.75308 (18)	0.1004 (9)
N1	0.40947 (9)	-0.01606 (16)	0.65816 (14)	0.0362 (4)
C3	0.28368 (11)	-0.20154 (19)	0.53335 (16)	0.0338 (4)
C10	0.38715 (12)	0.5013 (2)	1.02708 (18)	0.0437 (5)
H10A	0.3772	0.5512	1.0714	0.052*
C13	0.26886 (15)	0.6106 (2)	0.8536 (2)	0.0487 (6)
C6	0.43472 (12)	0.27635 (19)	0.82190 (17)	0.0357 (4)
C12	0.46543 (13)	0.3362 (2)	1.00919 (18)	0.0423 (5)
H12A	0.5082	0.2756	1.0425	0.051*
C7	0.41740 (12)	0.35150 (19)	0.89450 (17)	0.0339 (4)
C8	0.35402 (12)	0.4413 (2)	0.84621 (17)	0.0381 (5)
H8A	0.3213	0.4514	0.7691	0.046*
C9	0.33852 (12)	0.5171 (2)	0.91158 (18)	0.0396 (5)
C11	0.44993 (14)	0.4114 (3)	1.07490 (19)	0.0494 (6)
H11A	0.4825	0.4005	1.1520	0.059*
C4	0.30732 (15)	-0.1149 (2)	0.4840 (2)	0.0531 (6)
H4A	0.2813	-0.1172	0.4071	0.064*

supplementary materials

C1	0.38671 (15)	-0.0992 (3)	0.70599 (19)	0.0542 (6)
H1A	0.4137	-0.0944	0.7830	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0357 (2)	0.0348 (2)	0.0313 (2)	0.000	0.01984 (17)	0.000
C2	0.0657 (15)	0.0592 (14)	0.0373 (12)	-0.0254 (12)	0.0298 (12)	-0.0015 (11)
O2	0.0557 (9)	0.0459 (8)	0.0385 (8)	-0.0018 (7)	0.0334 (8)	-0.0011 (6)
01	0.0466 (9)	0.0489 (8)	0.0476 (9)	0.0067 (7)	0.0303 (8)	-0.0040(7)
C5	0.0570 (14)	0.0655 (15)	0.0377 (12)	-0.0221 (12)	0.0278 (12)	-0.0006 (11)
O4	0.0575 (10)	0.0744 (11)	0.0521 (11)	0.0161 (9)	0.0334 (9)	-0.0125 (9)
O3	0.126 (2)	0.138 (2)	0.0536 (13)	0.0874 (16)	0.0614 (14)	0.0386 (13)
N1	0.0377 (9)	0.0369 (8)	0.0344 (9)	-0.0025 (7)	0.0214 (8)	-0.0009(7)
C3	0.0372 (10)	0.0340 (10)	0.0331 (10)	-0.0006 (8)	0.0223 (9)	-0.0016 (8)
C10	0.0488 (12)	0.0509 (12)	0.0411 (12)	-0.0074 (10)	0.0317 (11)	-0.0121 (10)
C13	0.0633 (16)	0.0489 (13)	0.0509 (15)	0.0122 (11)	0.0430 (14)	0.0060 (10)
C6	0.0414 (11)	0.0325 (9)	0.0422 (12)	-0.0063 (8)	0.0295 (10)	-0.0051 (8)
C12	0.0412 (12)	0.0483 (11)	0.0391 (12)	0.0013 (9)	0.0245 (11)	-0.0001 (10)
C7	0.0370 (11)	0.0344 (10)	0.0360 (11)	-0.0056 (8)	0.0246 (10)	-0.0030 (8)
C8	0.0442 (11)	0.0422 (11)	0.0341 (11)	-0.0004 (9)	0.0265 (10)	-0.0002 (9)
С9	0.0460 (12)	0.0400 (11)	0.0423 (12)	-0.0028 (9)	0.0312 (11)	-0.0027 (9)
C11	0.0483 (13)	0.0661 (14)	0.0313 (11)	-0.0030 (11)	0.0218 (11)	-0.0053 (10)
C4	0.0581 (15)	0.0672 (15)	0.0321 (12)	-0.0238 (12)	0.0253 (12)	-0.0059 (10)
C1	0.0599 (15)	0.0638 (15)	0.0282 (11)	-0.0242 (12)	0.0199 (11)	-0.0054 (10)

Geometric parameters (Å, °)

Zn1—O1 ⁱ	1.9689 (15)	C3—C4	1.377 (3)
Zn1—O1	1.9689 (15)	C3—C3 ⁱⁱ	1.483 (4)
Zn1—N1	2.0669 (16)	C10—C11	1.373 (3)
Zn1—N1 ⁱ	2.0669 (16)	С10—С9	1.393 (3)
Zn1—O2	2.5953 (15)	C10—H10A	0.9300
C2—C1	1.372 (3)	С13—С9	1.485 (3)
C2—C3	1.384 (3)	C6—C7	1.504 (3)
C2—H2A	0.9300	C12—C7	1.383 (3)
O2—C6	1.251 (2)	C12—C11	1.394 (3)
O1—C6	1.266 (2)	C12—H12A	0.9300
C5—N1	1.327 (3)	C7—C8	1.380 (3)
C5—C4	1.374 (3)	C8—C9	1.392 (3)
С5—Н5А	0.9300	C8—H8A	0.9300
O4—C13	1.307 (3)	C11—H11A	0.9300
O4—H4	0.8200	C4—H4A	0.9300
O3—C13	1.210 (3)	C1—H1A	0.9300
N1—C1	1.327 (3)		
Ol ⁱ —Zn1—O1	139.21 (9)	O3—C13—O4	122.2 (2)
Ol ⁱ —Zn1—N1	98.86 (6)	O3—C13—C9	122.7 (2)
O1—Zn1—N1	107.76 (6)	O4—C13—C9	115.1 (2)

Ol ⁱ —Zn1—N1 ⁱ	107.76 (6)	O2—C6—O1	122.22 (18)
O1—Zn1—N1 ⁱ	98.86 (6)	O2—C6—C7	120.39 (18)
N1—Zn1—N1 ⁱ	97.64 (9)	O1—C6—C7	117.37 (18)
O1—Zn1—O2	55.71 (5)	C7—C12—C11	120.1 (2)
O1 ⁱ —Zn1—O2	97.19 (5)	C7—C12—H12A	119.9
N1—Zn1—O2	86.01 (6)	C11—C12—H12A	119.9
N1 ⁱ —Zn1—O2	153.80 (6)	C8—C7—C12	119.26 (18)
O2 ⁱ —Zn1—O2	102.11 (6)	C8—C7—C6	119.45 (18)
C1—C2—C3	119.8 (2)	C12—C7—C6	121.25 (19)
C1—C2—H2A	120.1	С7—С8—С9	120.82 (19)
C3—C2—H2A	120.1	С7—С8—Н8А	119.6
C6—O1—Zn1	105.40 (13)	С9—С8—Н8А	119.6
N1—C5—C4	123.4 (2)	C8—C9—C10	119.66 (19)
N1—C5—H5A	118.3	C8—C9—C13	117.70 (19)
С4—С5—Н5А	118.3	C10-C9-C13	122.63 (19)
C13—O4—H4	109.5	C10-C11-C12	120.7 (2)
C5—N1—C1	116.62 (18)	C10-C11-H11A	119.6
C5—N1—Zn1	121.76 (14)	C12—C11—H11A	119.6
C1—N1—Zn1	121.57 (14)	C5—C4—C3	120.1 (2)
C4—C3—C2	116.42 (19)	C5—C4—H4A	119.9
C4—C3—C3 ⁱⁱ	121.6 (2)	C3—C4—H4A	119.9
C2—C3—C3 ⁱⁱ	122.0 (2)	N1—C1—C2	123.7 (2)
C11—C10—C9	119.43 (19)	N1—C1—H1A	118.2
C11-C10-H10A	120.3	C2—C1—H1A	118.2
С9—С10—Н10А	120.3		

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (ii) -*x*+1/2, -*y*-1/2, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H4···O2 ⁱⁱⁱ	0.82	1.97	2.771 (3)	165
Symmetry codes: (iii) $-x+1/2$, $y+1/2$, $-z+3/2$.				

Fig. 2